Cincinnati. Mr. J. H. Lady, of this laboratory, performed the infrared analysis; Dr. D. O'Reilly, of Gulf Research Laboratories, performed the NMR analysis; Mr. E. Pantier, of this laboratory, performed some of the runs and distillations.

WESTINGHOUSE RESEARCH LABORATORIES PITTSBURGH, PA.

1340

Preparation of 5-Chloro- and 5-Bromo-2-(2-acetylethyl)benzimidazoles

TETSUO SUAMI¹ AND ALLAN R. DAY

Received February 6, 1959

In connection with other work on benzimidazoles, 2-acetylethylbenzimidazoles appeared to be of interest as potential antimetabolites and as starting materials for the preparation of other benzimidazole derivatives. The present paper describes the syntheses of two 2-acetylethylbenzimidazoles by the following route:

Six 4-substituted levulinanilides (I) were prepared by the acylation of 4-substituted anilines with γ -acetvoxy- γ -valerolactone (Table I). Lukes and Prelog² prepared levulinanilide and 4-methyllevulinanilide by this method.

The oximes of the levulinanilide derivatives (Table II) were prepared by the usual method using hydroxylamine hydrochloride and 2N sodium hydroxide solution.

The levulinanilide derivatives, reported in Table I, were nitrated with a sulfuric acid-nitric acid mixture, at -10 to -20° (Table III). The oximes of the nitro compounds were prepared also (Table IV).

For the determination of the position of the nitro group, the nitrolevulinanilide derivatives were hydrolyzed with dilute hydrochloric acid to the corresponding nitroaniline derivatives. 4-Nitro-

								Ana	lyses, $\%$				
	M.P.,	Yield,		Car	bon	Hydi	rogen	Nitre	ogen	Chlo	rine	Brot	nine
Я	°C.	%	Formula	Caled.	Found	Caled.	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found
CI	$149-151^{a}$	58.7	C _{II} H ₁₂ NClO ₂	58.54	58.58	5.36	5.36	6.21	6.22	15.71	15.56		
Br	$157 - 158^{b}$	57.6	$C_{11}H_{12}NBrO_2$	48.91	48.99	4.48	4.63	5.19	5.22			29.58	29.40
COOH	$214-216^{c}$	48.5	$C_{12}H_{13}NO_4$	61.27	61.29	5.57	5.40	5.96	5.98				
	(dec.)												
COOC ₂ H ₅	$108-109^{d}$	28.8	$C_{14}H_{17}NO_4$	63.85	63.72	6.51	6.59	5.32	5.28				
NHCOCH ⁸	$201-202^{e}$	49.5	C13H16N2O3	62.89	62.75	6.50	6.65	11.29	11.23				
NHCO(CH ₂) ₂ COCH ₃	$(m dec.)$ $217-218^{c}$	37.8	$\mathrm{C}_{16}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}_{4}$	63.16	63.05	6.63	6.57	9.21	9.14				
^a Recrystallized from	95% ethanol.	^b Recrystall	ized from methane	ol. ^c Recryst	allized fron	n water. ^d	Recrystalli	zed from et	hyl acetate	-ether. ^e Re	crystallized	from 1-buty	1 alcohol.

2

-NHCOCH2CH2COCH3

TABLE I

⁽¹⁾ Assistant Professor of Keio University (Tokyo, Japan). Postdoctoral Research Associate in the Department of Chemistry, University of Pennsylvania (1957-58). (2) R. Lukes and V. Prelog, Collection Czechoslov. Chem.

Communs., 1, 282 (1929).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<i>}</i>		HON						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Λı	alyses, %				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Carbon	Hyd	rogen		Vitrogen	Ch	lorine	Bro	mine
$ \begin{array}{c} H \\ CI \\ CI \\ CI \\ CI \\ CI \\ H_3 N_2 CI O_2 \\ Br \\ CI \\ H_3 N_2 CI O_2 \\ Br \\ CI \\ H_3 N_2 CI O_2 \\ Br \\ CI \\ H_3 N_2 CI O_2 \\ Br \\ CI \\ H_3 N_2 CI O_2 \\ Br \\ CI \\ H_3 N_2 O_1 \\ Br \\ CI \\ H_1 N_2 O_1 \\ CI \\ Br \\ CI \\ C$	Formula Calc	d. Found	Caled.	Found	Calcd	. Found	Calcd.	Found	Caled.	Found
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	³ ₁₁ H ₁₄ N ₂ O ₂ 64.0	36 64.09	6.84	6.67	13.55	13.49				
Cl 164–166 C ₁₁ H ₁₃ N ₂ ClO ₂ 54.89 Br 178–180 C ₁₁ H ₁₃ N ₂ O ₁ 57.59 COOH 191–193 (dec.) C ₁₂ H ₁₃ N ₂ O ₁ 60.42 NHCOCH ₃ 178–179 C ₁₄ H ₁₈ N ₂ O ₁ 57.47 NHCOCH ₃ 217–219 (dec.) C ₁₃ H ₁₇ N ₃ O ₃ 59.30 NHCO(CH ₃) ₂ COCH ₃ 217–219 (dec.) C ₁₆ H ₂₈ N ₄ O ₁ 57.47 R $\stackrel{1}{\sim}$ R $\stackrel{1}{\sim}$ R $\stackrel{1}{\sim}$ H $\stackrel{1}{\sim}$ CH ₃ $\stackrel{1}{\sim}$ $\stackrel{1}{\sim}$ $\stackrel{1}{\sim}$ $\stackrel{1}{\sim}$ CH ₃ $\stackrel{1}{\sim}$	C ₁₂ H ₁₆ N₂O₂ 65.4	13 65.62	7.32	7.09	12.72	12.68				
$ \begin{array}{cccccc} Br \\ C00H \\ C00H \\ 178-179 \\ C18H_4N^2O_4 & 57.59 \\ C18H_4N^2O_4 & 57.59 \\ C18H_4N^2O_4 & 57.59 \\ 0.42 \\ 0.42 \\ 0.42 \\ 0.42 \\ 0.42 \\ 0.47 \\ 0.147 \\ 0.17-219 & (dec.) & C_{16}H_{28}N_4O_4 & 57.47 \\ 0.57.47 \\ 57.47 \\ 57.47 \\ 57.47 \\ 57.47 \\ 8.9.10 \\ 0.142 \\ 0.01 \\$	711H13N2CIO2 54.8	39 54.74	5.44	5.35	11.64	11.53	14.77	14.55		
$\begin{array}{cccccc} C00H & 191-193 (dec.) & C_{12}H_{14}N_2O_4 & 57.59 \\ C00C_3H_5 & 178-179 & C_{14}H_8N_2O_4 & 60.42 \\ NHCO(CH_2)_8COCH_3 & 217-219 (dec.) & C_{16}H_{22}N_4O_4 & 57.47 \\ S7.47 & S7.59 \\ NHCO(CH_2)_8COCH_3 & 217-219 (dec.) & C_{16}H_{22}N_4O_4 & 57.47 \\ R & & & & & & \\ R & & & & & & \\ R & & & &$	C ₁₁ H ₁₃ N₂BrO₂ 46.3	33 46.09	4.59	4.35	9.8	9.76			28.03	28.20
$\begin{array}{cccc} \mbox{Cut}_{15} & \mbox{I78-179} & \mbox{Cu}_{195-197} & \mbox{Gec.} & \mbox{C}_{16} H_{18} N_2 O_4 & \mbox{Go} & \mbox{59.30} & \mbox{59.30} & \mbox{S17-219} & \mbox{dec.}) & \mbox{C}_{16} H_{22} N_4 O_4 & \mbox{57.47} & \mbox{57.47} & \mbox{S17-219} & \mbox{dec.}) & \mbox{C}_{16} H_{22} N_4 O_4 & \mbox{57.47} & \mbox{S17-219} & \mbox{dec.}) & \mbox{C}_{16} H_{22} N_4 O_4 & \mbox{57.47} & \mbox{S17-219} & \mbox{dec.}) & \mbox{C}_{16} H_{22} N_4 O_4 & \mbox{57.47} & \mbox{S17-219} & \mbox{dec.}) & \mbox{C}_{16} H_{22} N_4 O_4 & \mbox{57.47} & \mbox{S17-219} & \mbox{dec.}) & \mbox{C}_{16} H_{22} N_4 O_4 & \mbox{S17-219} & \mbox{dec.}) & \mbox{C}_{16} H_{22} N_4 O_4 & \mbox{S17-219} & \mbox{dec.}) & \mbox{C}_{16} H_{12} N_4 O_4 & \mbox{dec.}) & \mbox{C}_{16} H_{12} N_4 O_4 & \mbox{dec.}) & \mbox{C}_{17} H_{12} N_4 O_4 & \mbox{dec.} \\ \mbox{C}_{17} & \mbox{C}_{19} & \mbox{dec.}) & \mbox{C}_{17} H_{12} N_2 O_4 & \mbox{dec.} \\ \mbox{C}_{17} & \mbox{C}_{17} & \mbox{C}_{17} M_{12} O_4 & \mbox{dec.} \\ \mbox{dec.} & dec$	C ₁₂ H ₁₄ N ₂ O ₄ 57.4	59 57.51	5.64	5.68	11.20	11.21				
$\begin{array}{c cccc} {\rm NHCOCH}_{3} & {\rm 195-197} ({\rm dec.}) & {\rm C}_{13}{\rm H}_{17}{\rm N}_{3}{\rm O}_{3} & {\rm 59.30} \\ {\rm NHCO(CH}_{2})_{\rm s}{\rm COCH}_{3} & {\rm 217-219} ({\rm dec.}) & {\rm C}_{16}{\rm H}_{28}{\rm N}_{4}{\rm O}_{4} & {\rm 57.47} \\ {\rm S7.47} & {\rm S7.47} \\ $	C ₁₄ H ₁₈ N₂O₄ 60.4	1 2 60.52	6.52	6.31	10.01	7 10.03				
$\begin{array}{c cccc} \mathbf{NHCO(CH_2)_{PCOCH_3}} & \mathbf{217-219} & (\mathrm{dec.}) & \mathbf{C_{16}H_{22}N_4O_4} & 57.47 \\ & & & & & \\ \mathbf{R}_{-\frac{4}{4}} & & & \\ & & & & \\ \mathbf{R}_{-\frac{4}{4}} & & & \\ & & & & & \\ \mathbf{R}_{-\frac{4}{4}} & & & & \\ & & & & & \\ \mathbf{R}_{-\frac{4}{4}} & & & & \\ & & & & & \\ \mathbf{R}_{-\frac{4}{4}} & & & & \\ & & & & & \\ \mathbf{R}_{-\frac{4}{4}} & & & & \\ & & & & & \\ \mathbf{R}_{-\frac{4}{4}} & & & & \\ & & & & & \\ \mathbf{R}_{-\frac{4}{4}} & & & & \\ & & & & & \\ \mathbf{R}_{-\frac{4}{4}} & & & & \\ & & & & & \\ \mathbf{R}_{-\frac{4}{4}} & & & & \\ \mathbf{R}_{-\frac{4}{4}} & & & & \\ & & & & & \\ \mathbf{R}_{-\frac{4}{4}} & & & & \\ & & & & & \\ \mathbf{R}_{-\frac{4}{4}} & \\ \mathbf{R}_{-\frac{4}{4}} & & \\ \mathbf{R}_{-\frac{4}{4}} & \\ \mathbf{R}_{-\frac{4}{$	2 ₁₃ H ₁₇ N ₃ O ₃ 59.5	30 59.16	6.51	6.75	15.9(15.94				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D ₁₆ H ₂₂ N ₄ O ₄ 57.4	17 57.42	6.63	6.45	16.7(16.78				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} Yield, & Form \\ \% & Form \\ 49.6 & C_{11}H_{12}N_2 \\ 24.0 & C_{13}H_{14}N_2 \\ 55.6 & C_{11}H_{11}N_2 \\ 55.6 & C_{11}H_{11}N_2 \\ 53.6 & C_{12}H_{11}N_2 \\ 41.7 & C_{14}H_{16}N_2 \\ 45.7 & C_{14}H_{16}N_2 \end{array}$	Ia Calc 04 57.5 04 57.5 010 57.5 010 57.5 010 57.5 010 57.5 00 51.4 54.5 0 0.6 54.5 0.6 54.5 0.6 54.5 0.6 54.5	Carbon d. Found 55.68 9 57.69 1 48.90 2 42.13 3 54.53 4 53.13	Hydr 5.12 5.64 4.10 3.55 5.64 4.10 3.55 5.64 4.10 5.12 5.12	ogen 5.10 5.83 4.30 5.83 4.38 5.12 5.26	Analyses Analyses Analyses Nitrogen Oaled. Fo Caled. Fo 11.20 11 10.35 10 9.09 8.89 9.09 8.44	, % 1, % 56 233 27 13.1 .27 13.1 .35 .35 .35 .35 .33 .13.1	Chlorine d. Found 0 13.21	Bro Caled. 25.36	Found 25.28

SEPTEMBER 1959

NOTES

1341

					T	ABLE IV								
					R	NHCOCH ₂ C	CCH₃ II NOH							
	Dosition								Analys	cs %				
	of Nitr	0			Cal	rbon	Hydro	gen	Nitro	gen	Chlo	rine	Broi	nine
R	Group	, W	.P., °C.	$\operatorname{Formula}$	Calcd.	Found	Calcd.	Found	Calcd.	Found	Calcd.	Found	Caled.	Found
H CH:	4.0	164-5 143-1	165 144	C ₁₁ H ₁₃ N ₃ O ₄	52.59 54 22	52.43 54 90	5.21 5.70	5.02 5.68	16.73 15 24	16.72 15 22				
G	5 67	127-1	130	C ₁₁ H ₁₂ N ₃ ClO ₄	46.24	46.32	4.24	4.26	10.04 - 14.71	14.90	12.41	12.16		
Br	2	144-1	146	C ₁₁ H ₁₂ N ₃ BrO	40.01	39.97	3.67	3.89	12.73	12.77			24.21	24.38
COOH	01 0	189-	190 (dec.)	C ₁₂ H ₁₃ N ₃ O ₆	48.81 70.01	49.08	4.44 7.90	4.38 * :	14.23	14.08				
CUUCAHS NHCOCH.	73 F7	-161 164-1	152 166 (don)	CHHINSO	52.01 50.64	51.93 50.40	9.3U 7.93	5.18 5.00	13.00 19.17	12.96				
NHCO(CH ₂) ₂ CO	CH_3 $2(3)$	177-	178 (dec.)	CleH21N606	50.26	50.33	5.54	5.57	18.32	18.37				
					L	ABLE V								
					R	HCOCH2CH H2	I2COCH3							
						1		V	nalyses %			:		
		Yield,			Carbon	Ĥ	ydrogen		Nitrogen		Chlorir	ie ie	Brom	ine
R	M.P., °C.	%	Formul	a Calcd	. Found	Caled.	Found	Cale	d. Fou	Ca	led.	Found	Caled.	Found
CI Br COOC2Hs NHCOCH,	$\begin{array}{c} 151-153^{a} \ (dec.) \\ 171-173^{b} \ (dec.) \\ 132-133^{c} \\ 157-158^{d} \ (dec.) \end{array}$	32.3 34.0 23.0 35.1	C ₁₁ H ₁₃ N ₂ C C ₁₁ H ₁₃ N ₂ C C ₁₄ H ₁₈ N ₂ C C ₁₄ H ₁₈ N ₂ C	3102 54.8 BrO2 46.3 04 60.4 03 59.30	9 55.00 3 46.15 2 60.34 0 59.29	$\begin{array}{c} 5.44 \\ 4.59 \\ 6.52 \\ 6.51 \end{array}$	$\begin{array}{c} 5.29 \\ 4.62 \\ 6.62 \\ 6.57 \end{array}$	11.6 9.8 10.0 15.9	4 11. 33 9. 37 10. 06 15.	62 98 02 95	.73	14.81	28.03	27.77
					HX	-CH2CH	I ₂ COCH ₃							
CI Br	136-138 146-147	32.4 14.2	$C_{11}H_{11}N_{2}C$ $C_{11}H_{11}N_{2}B$	30 59.3 8r0 49.46	3 59.34 3 49.61	4.98 4.15	$\begin{array}{c} 4.98\\ 3.94\end{array}$	12.5 10.4	88 12. 10.	55 15 67	.92	16.17	29.92	30.13
 Recrystallize 	d from methanol-	cther. ^b Rec	rrystallized fr	om ethanol-eth	er. ^c Recryst	allized from	methanol-v	vater. ^d Re	crystallized	from etha	nol.			

1342

aniline was obtained from nitrolevulinanilide. 4-Amino-2-nitrotoluene was obtained from nitro 4-methyllevulinanilide. From the hydrolysis of the other nitrolevulinanilides (R=Cl, Br, COOH, COOC₂H₅), 4-chloro-2-nitroaniline, 4-bromo-2-nitroaniline, 4-amino-3-nitrobenzoic acid, and ethyl 4-amino-3-nitrobenzoate, respectively, were obtained. 4-Acetamido-2-nitrolevulinanilide was hydrolyzed with barium hydroxide solution by the method of Bülow and Mann³ to obtain 4-amino-3nitroacetanilide.

Four of the compounds, in which the nitro groups were located in the 2 position, were reduced with iron powder and dilute hydrochloric acid in ethanol to form the corresponding amino derivatives.

Only two of the four amino compounds could be converted to benzimidazoles by Phillips procedure.⁴ The amino compounds and 2-acetylethylbenzimidazoles are listed in Table V.

EXPERIMENTAL

General method for preparation of 4-substituted levulinanilides. The 4-substituted aniline (0.1 mole) was mixed with 0.1 mole of γ -acetoxy- γ -valerolactone² and 20-50 ml. of 50% aqueous ethanol. The mixture was allowed to stand for 3 to 4 days at room temperature with occasional shaking. The crystals, which separated, were removed and washed with 50% aqueous ethanol. The product was then recrystallized from a suitable solvent.

General method for preparation of nitro 4-substituted levulinanilides. The 4-substituted levulinanilide (0.04 mole) was added gradually to 50 ml. of concentrated sulfuric acid with cooling $(-10 \text{ to } -20^{\circ})$ and vigorous stirring. Then a mixture of 10 ml. of concentrated sulfuric acid and 3.2 ml. of concentrated nitric acid and a small amount of urea was added dropwise, with cooling and stirring. After 30 min., the mixture was poured onto cracked ice, at which point a yellow precipitate formed. After washing with cold water and drying, the product was recrystallized from a suitable solvent.

General method for preparation of amino 4-substituted levulinanilides. The nitro compound (0.04 mole), 12 g. of reduced iron powder, and 4.5 ml. of 2N hydrochloric acid was added to 40 ml. of ethanol and the mixture heated for 8 hr. on a steam bath. The reaction mixture was neutralized with 2Nsodium hydroxide solution. The hot solution was filtered and the filtrate evaporated under reduced pressure. The crude product, so obtained, was recrystallized from a suitable solvent.

General method for preparation of 2-acetylethylbenzimidazoles. One g. of the 2-aminolevulinanilide derivative was dissolved in 10 ml. of 4N hydrochloric acid and the solution was refluxed for 2 hr. The solution was neutralized with ammonium hydroxide. A gummy precipitate was formed. The mixture was allowed to remain in the refrigerator (2-3 hr.) until the gummy product became solid. The crude product was then recrystallized from hot water with the aid of decolorizing carbon. The products are soluble in 1N hydrochloric acid and in 2N sodium hydroxide solution.

General method for determining the position of the nitro group. One g. of the 4-substituted nitrolevulinanilide was dissolved in 5 ml. of 95% ethyl alcohol and 5 ml. of 2N hydrochloric acid. The solution was refluxed for 1 hr. and cooled to yield crystals of the corresponding nitroaniline. The products were purified by recrystallization from hot water. They were identified by melting point and mixed melting point determinations.

DEPARTMENT OF CHEMISTRY UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, PA.

Syntheses of Some β -Aroyl- α - and β -methylacrylic Acids

Abdallah M. Fleifel

Received February 6, 1959

The condensation of citraconic anhydride with anisole, *p*-cresyl methyl ether, diphenyl, and fluorene has been studied. Powdered anhydrous aluminum chloride (2 equiv.) was added portionwise to the mixture of citraconic anhydride (1 equiv.) and the aromatic compound (1 equiv.) in s-tetrachloroethane or nitrobenzene as solvent. In each case, the reaction product was a mixture of two isomeric acids: R-CO-CH=CMe-COOH (type A) and R-CO-CMe=CH-COOH (type B). The structure of both acids is established by one of the following methods: (i) Reduction of the obtained β -aroylacrylic acids (A or B) with hydrogen in palladium chloride solution and activated charcoal to the corresponding β -aroylpropionic acids.¹ These have been found to be identical with authentic specimens prepared by the action of methylsuccinic anhydride on the corresponding aromatic compound.²⁻⁴ (2) The synthesis of β aroylacrylic acids (A or B) by bromination of the corresponding β -aroylpropionic esters followed by dehydrobromination and hydrolysis.⁵ This is illustrated in the following scheme:

Acids of type A were predominant and less soluble (cf. ref. 4), those of type B were more soluble and hence comparatively difficult to purify.

⁽³⁾ C. Bülow and E. Mann, Ber., 30, 980 (1897).

⁽⁴⁾ M. A. Phillips, J. Chem. Soc., 2393 (1928).

⁽¹⁾ F. Mayer and G. Stamm, Ber., 56, 1424 (1923).

⁽²⁾ F. G. Baddar, H. A. Fahim, and A. M. Fleifel, J.

<sup>Chem. Soc., 3302 (1955).
(3) B. L. Bhatt and K. S. Nargund, J. Univ. Bombay, 11,</sup> Pt. 3, 131 (1942).

⁽⁴⁾ F. G. Baddar, H. A. Fahim and A. M. Fleifel, J. Chem. Soc., 2199 (1955).

⁽⁵⁾ E. P. Kohler and H. Engelbrecht, J. Am. Chem. Soc., 41, 768 (1919).